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Abstract  
This paper investigates the current density singularity in 

electromigration of solder bumps. A theoretical analysis is 
performed on a homogenous wedge with arbitrary apex angle, 
ߨ)2 െ  ଴), when the current flow passes through. A potentialߠ
difference is applied at a distance far away from the tip of the 
wedge. It is found that current density singularity exists at the 
tip of the wedges when the angles ߠ଴ ൏ 90°. The acute angles 
represent the corner configuration of the actual solder bump 
and the interconnect. The current crowding in bumps is a 
result of singularity exhibited at such corners. Finite element 
results confirm that the maximum current density has strong 
dependence on mesh size. To eliminate the singularity effect, 
a volume-averaged current density approach, over a crescent 
shape where the maximum current density occurs, is 
suggested. Such an averaged value represents the 
concentration of current flow in the region, and is also 
insensitive to mesh sizes over a large range of crescent 
thickness.  

Introduction 
Electromigration (EM) in solder bumps is a failure 

mechanism due to the mass transport of metal atoms when 
there is moment transfer between the conducting electrons 
(current flow) and diffusing metal ions. This generates voids 
on the cathode side and hillocks on the anode side of the 
solder bump. In the early days of the discovery of EM in 
interconnects, such as Al, Fiks [1] and Huntington et al. [2] 
proved electron wind force to be a major contribution to EM. 
Later Black has developed an equation relating the mean time 
to failure (MTTF) to the current density as shown: 

ܨܶܶܯ ൌ ݌ݔ݁ ௡ି݆ܣ ൬
ܳ

݇ܶ
൰                                                            ሺ1ሻ 

where A is constant, j is current density, n is a model 
parameter of current density, Q is the activation energy, k is 
Boltzmann’s constant, and T is the conductor temperature [3]. 
Black has provided the above equation to analyze failure in Al 
interconnects. When Black’s equation was used to predict the 
MTTF of solder bumps, the numerical results varied with the 
experimental results [4-6]. This is because that Black’s 
equation assumes that the current density in interconnects to 
be fairly uniform and constant, whereas in solder bumps 
current crowding occurs at the entrance of the solder bump.  

A preliminary study by the authors has revealed that finite 
element models using a relatively fine mesh will always 
generate a higher value of current density. On the contrary a 
relatively coarse mesh will generate a lower value of current 
density [7]. This deviation in the output may influence the EM 
reliability prediction.  

In this work, an analytical model is developed to find out 
whether the singularity of current density exists when the 

current passes through the solder bump and interconnect 
interface. Since the geometry of solder bumps and 
interconnect interface is very complex, a simple wedge-like 
shape is considered in this paper. Furthermore the material of 
the wedge is assumed to be homogenous and a variety of 
wedge shapes are tested for singularity. In addition, a volume 
averaging approach is proposed to obtain consistent results 
regardless of mesh sizes.  

Study of Singularity of Current Density in Metal 
Conductors  

The current crowding occurs in metal conductors when 
there is a change in the current flow direction because of a 
sudden change in cross-section area. This current crowding is 
the main cause for the EM phenomenon. In solder bumps 
current crowding occurs at the nearest corner from where 
current enters the bump. The present work is focused on 
solving a singular problem using an analytical model. The 
geometry at the intersection of the solder bump and 
interconnect is very complex. To simplify, a wedge-shaped 
geometry is considered with arbitrary apex angle, 2(ߨ െ  ,(଴ߠ
as shown in Figure 1. It is assumed that the wedge is made up 
of homogenous material. The current flows through the 
wedge. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Current flow through a wedge of apex angle 
૛ሺ࣊ െ  ૙ሻࣂ

A voltage function in polar coordinates is assumed of the 
form 
ܸሺݎ, ሻߠ ൌ  ሻ                                                                          ሺ2ሻߠఒ݂ሺݎ
where ߣ is to be determined as part of the solution. With this 
choice of voltage function, the current density components in 
polar coordinates can be expressed as following: 
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where ߩ is resistivity of the material. The boundary conditions 
(BC) required on the faces of wedge are: 
݆ఏ ൌ 0,  at ߠ ൌ േሺߨ െ  ଴ሻ for all r                                        (5)ߠ
Substituting the BC, ݆ఏ ൌ 0 in the Equation (4) leads to  
߲ܸ
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ൌ  െ
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ݎ
ሻߠఒ݂ᇱሺݎ ൌ 0     at ߠ ൌ േሺߨ െ  ଴ሻ for all r      ሺ6ሻߠ

Since λ ് 0, at ߠ ൌ േሺߨ െ  ଴ሻ we haveߠ
݂ᇱሺߠሻ ൌ 0                                                                                        ሺ7ሻ 

From the governing equation of electrostatics, we have 
ଶܸ׏ ൌ 0                                                                                           ሺ8ሻ 
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பఏమቁ, substituting the assumed 

voltage function, into the Equation (8), we get a homogeneous 
linear differential equation with constant coefficients as 
shown  
݂ᇱᇱሺߠሻ ൅ ݂ሺߠሻߣଶ ൌ 0                                                                    ሺ9ሻ 

The solution for ݂ሺߠሻ, obtained by solving the above 
equation is  
݂ሺߠሻ ൌ ሻߠcosλሺ ܣ ൅  ሻ                                              ሺ10ሻߠsinλሺ ܤ
where the constants A and B are to be determined. Applying 
Equation (7) to the wedge faces which are at angles (ߨ െ  (଴ߠ
and െሺߨ െ  ሻ in Equation (10)ߠ଴ሻ, to the general form of ݂ሺߠ
produces a system of two simultaneous equations with 
unknown constants. These equations can be represented in a 
matrix form as: 
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Since Equation (11) is homogeneous, the determinant of 
coefficient matrix must be equal to zero in order to get 
meaningful solutions. So, 
sin2λሺߨ െ ଴ሻߠ ൌ 0                                                                     ሺ12ሻ 
and, the roots of this equation  are obtained as follows, 

λ ൌ
ߨ݊

2ሺߨ െ ଴ሻߠ
     where ݊ ൌ 0, േ1, േ2, …                          ሺ13ሻ 

Substituting the value of  λ in the voltage function, we 
have the general solution for a wedge with arbitrary apex 
angle, 2(ߨ െ  :(଴ߠ
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For all values of ݊ ൏ 0, the voltage goes to infinity at the 
origin, which is not physically reachable. All these roots are 
rejected and the general solution consisting of all the 
acceptable terms becomes: 
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Expanding the above equation for all values of n: 
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For ݊ ൒ 2, 
డ௏

డ௥
 equals to zero as r approaches zero (i.e. at 

origin). As 
డ௏

డ௥
 is a part of current density 

component  ௥݆(Equation (3)), it’s logical that  ௥݆ also equal to 

zero at the origin. For n = 0, 
డ௏

డ௥
 will be equal to zero. When n 

= 1, i.e. the second term in the expanded Equation (16), 
డ௏

డ௥
 is: 
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In the above equation, the exponential of ‘r’, i.e. 

ቀ
ଶఏబିగ

ଶሺగିఏబሻ
ቁ, generates negative values for some values of ߠ଴. In 

such cases, 
డ௏

డ௥
 approaches infinity as r approaches zero. As a 

result current density also approaches infinity. This shows that 
singularity of current density exists for some angles of ߠ଴ . 
Two general cases are discussed below. Case 1 discusses 
about the wedge with acute angles ሺߠ଴ ൏ 90°ሻ  and Case 2 
discusses angles greater than equal to 90 ሺߠ଴ ൒ 90°ሻ. 

Case 1: When ߠ଴ ൏
గ

ଶ
, 

ଶఏబିగ

ଶሺగିఏబሻ
൏ 0. Equation (17) indicates 

that 
డ௏

డ௥
, or ௥݆  becomes infinity when r approaches zero. For 

example when ߠ଴ ൌ 0, the wedge is fully closed upon itself 
and takes the shape of a crack as shown in Figure 2. 
When ଴ߠ  ൌ

గ

ସ
, wedge has a shape of V-notch as shown in 

Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2 A wedge with an angle ߠ଴ ൌ 0 resembling a crack  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 A wedge with an angle ߠ଴ ൌ
గ

ସ
 resembling a V-notch 

 
Substituting the values of ߠ଴ in Equation (17), we get  

For ߠ଴ ൌ 0      
డ௏
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 ൌ   
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For ߠ଴ ൌ
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In Equations (18) and (19) the exponential of r is negative 

for both the angles. When r approaches zero, 
డ௏

డ௥
 approaches 

infinity. Subsequently current density also equals to infinity. 
This shows that the current density is unbounded and thus the 
singularity exist at the origin. 

Case 2: ߨ ൒ ଴ߠ ൒
గ

ଶ
, 

ଶఏబିగ

ଶሺగିఏబሻ
൒ 0. From Equation (17), the 
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will not become infinity when r approaches zero. Two special 

cases with ߠ଴ ൌ
గ

ଶ
, and ߠ଴ ൌ

ଷగ

ସ
 are shown in Figure 4 and 5 

respectively. When ߠ଴ ൌ
గ

ଶ
, the wedge becomes a vertical free 

surface. The current flows in the direction parallel to the 

surface as shown in Figure 4. When ߠ଴ ൌ
ଷగ

ସ
, the wedge takes 

the shape of a cone and the flow of the current in this case is 
as shown in Figure 5. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 A wedge with an angle ߠ଴ ൌ

గ

ଶ
  resembling a 

vertical free surface 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5 A wedge with an angle ߠ଴ ൌ
ଷ

ସ
 resembling a ߨ

cone 
 
Substituting the values of ߠ଴ in Equation (17), we get  

For ߠ଴ ൌ
గ
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In Equations (20) and (21) the exponential of r is ൒ 0 for 
both the angles. In both cases when r approaches zero the 
current density is bounded.  
     It can be inferred from the above study that the current 
density singularity arises for wedges with acute ߠ଴ angles 
଴ߠ) ൏ 90°). For the wedges with angles (ߠ଴ ൒ 90°) there is no 
current density singularity observed. In actual solder bump 
geometry, where solder bump is attached to a different 
material (ex. copper), the singularity is expected to occur with 
the geometry given. This has been evident with finite element 
results in reference [8], and more results will be shown in next 
section. 

Numerical Investigation and Volume Averaging  
To solve the current flow problem, a finite element model 

as shown in Figure 6 is considered. The figure shows five 
solder bumps (with copper posts on top of them) electrically 
connected with each other in a daisy chain format.  To 
simplify the model, only the corner bump is designed in actual 
ball shape and the rest of the bumps are considered as 
rectangular blocks. At one end of the electrical connection, 
the voltage potential is set grounded (zero), while at the other 
end a lumped current load of 1.7 Amps [9] is applied. Since 
the current flows from top to bottom portion of the corner 
bump, electromigration would occur at the bottom of the 
bump. Hence the focus of this work is the bottom portion of 
corner bump. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Finite element model with boundary conditions 
and current flow direction 

 
To investigate the effects of mesh size, three different 

mesh schemes are considered. Figure 7 shows three mesh 
patterns, denoted by ‘X’, ‘X/2’ and ‘X/4’, indicating the mesh 
size is reduced by a factor of two each time. The maximum 
current density at the bottom of the bump will be extracted.  
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Figure 7 Three different mesh schemes 
 

To remove the singularity effect, one method is to extract 
the averaged current density over certain volumes. In this 
method the current density is averaged over all the elements 
of the selected volumes as following: 

௔௩௘ܬ∆ ൌ
Σ∆ܬ ∙ ௢ܸ

Σ ௢ܸ
                                                                         ሺ22ሻ 

where, ∆ܬ௔௩௘ is average current density, ∆ܬ is current density 
in each element, ௢ܸ is volume of each element. Two different 
volume averaging approaches are studied. In the first 
approach, the current density is averaged over entire bottom 
surface, as shown in Figure 8. For all three different mesh 
sizes, the thickness of bottom disk is fixed. 
 
 
 
 
 
 
 
 
 
 

Figure 8 An entire disk volume at the bottom of solder 
bump for averaging 

According to the conservation of current flow, the current 
passing through the disk will remain same if the bump shape 
is same. Such an averaged value may not reflect the current 
crowding at the entrance of the bumps. Therefore, in the 
second approach, a crescent shaped portion is selected from 
the outer most ring of the bottom disk, where maximum 

current density is observed. Figure 9 shows the crescent 
selected from the outer most ring of the bottom disk. The 
crescent is selected in such a way that the maximum current 
density location coincides with the center of it. Three different 
ring sizes, termed p/r ratios, as shown in Figure 10, are 
studied to better understand the concentration of current flow 
in the current crowding regions of solder bump. For each p/r 
ratio, three mesh sizes are applied as shown in Figure 11. 
 
 
 
 
 
 
 

 
Figure 9 Crescent volume from the bottom disk volume 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10 Crescents with three p/r ratios 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 11 Crescents with three different mesh schemes 

Results 
Figure 12 shows the contours of the current density in 

bottom layer with three different meshes. Cleary it shows the 
strong dependency with mesh size. The values of maximum 
and average current densities of bottom disk with different 
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mesh sizes are tabulated in Table 1. As the mesh size is 
reduced by a factor of four, the maximum current density has 
increased by 24%. The average current densities calculated in 
the bottom disk for all the mesh schemes are the same. It is 
observed that the averaging has decreased the current density 
value in bottom disk by 56% compared to the maximum 
current density (in the case of ‘X/4’ mesh size). 

 
 
 
 
 
 
 
 
 
 
Figure 12 Current density contours with different meshes 

in the bottom disk 
 

Table 1 The Maximum and Average Current Densities 
Calculated in Bottom Disk for Different Mesh Sizes 

Mesh Size Max. 
Current dens. 
(Bottom Disk 
& Crescent) 

(A/m2) 

Average 
Current dens. 

in Bottom 
Disk 
(A/m2) 

x 0.55e8  0.30e8  

x/2 0.60e8  0.30e8  

x/4 0.69e8  0.30e8  

 
Table 2 summarizes all the averaged current density 

values calculated for all thicknesses (p/r = 0.2, 0.4 and 0.6) of 
crescents with different meshes. It can be inferred that, for a 
crescent size of p/r = 0.2, the average current densities 
calculated with all the mesh sizes are nearly same and are not 
mesh size dependent. A similar trend was also observed for 
crescent size of p/r = 0.4 and 0.6. No change in average 
current density is observed for crescent as the p/r value 
increases from 0.2 to 0.4. But when p/r is increased from 0.4 
to 0.6 the average current density has decreased by a small 
amount. 

Table 2 The Average Current Densities of all the 
Crescents Thicknesses with Different Mesh Sizes 
Mesh 
Size 

Average Current dens. (A/m2) in 
Crescent with 

p/r = 0.2  p/r = 0.4  p/r = 0.6

x 0.45E8 0.45e8 0.43e8 

x/2 0.44E8 0.44e8 0.42e8 

x/4 0.44E8 0.44e8 0.42e8 

 
The results presented in Table 2 show that the 

concentration of current density is placed on a crescent region 

where the current flows through. Even the p/r ratio increases 
up to 0.6, the averaged current density remain a relatively 
constant value, and this value is significantly higher than the 
averaged value over entire disk volume (Table 1). Therefore, 
the averaged current density over the crescent shape can be 
used when predicting the reliability under current stressing. 

Conclusions 
In this work, a homogenous wedge with arbitrary apex 

angle, 2( ߨ െ ଴ߠ ), has been used to conduct an analytical 
model study to examine the singularity of current density in 
solder bumps. Effect of wedge angles on the singularity is 
studied in detail. Current density singularity is only observed 
in wedges with acute angles ଴ߠ  ൏ 90° . Finite element 
modeling indicates that current density exhibits a strong 
mesh-size dependency, signaling the existence of singularity 
at the corner of solder bumps. To eliminate the singularity 
effect, a volume averaging method is suggested. Furthermore, 
a volume-averaging approach based on a crescent-shape 
volume, where the maximum current density occurs, is 
introduced. It is observed in the averaged current density is a 
relatively constant value over a large range of crescent 
thickness with different mesh sizes. Such value is 
significantly higher than the current density averaged over the 
entire bottom layer. Therefore, the averaged current density 
over the crescent shape can be used when predicting the 
reliability under current stressing. 
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